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In this article, an inverted pendulum system is set up to explore the dynamics of a horizon-
tally driven pendulum which exhibits a great variety of dynamical behavior and appears in a
wide range of applications in the field of engineering. The facility is efficient to experimental-
ly explore two kinds of coexisting movement patterns in the horizontally driven pendulum,
i.e. in-phase and anti-phase patterns between the angular velocity of the pendulum rod and
the direction of the driving forces. Theoretical analysis is applied to reveal the regimes of
the coexistence of the two movement patterns, which is promising to control the system to
a desired pattern.
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1. Introduction

The study of pendulum motion is a classical problem in physics since it reveals the basic mo-
vement in the world of nature (Mokha et al., 1991; Wu et al., 2012a), ranging from physics,
chemistry ecology and economics to biology (Wu et al., 2012b). Without additional driving and
damping, an isolated pendulum swings in a simple period mode. With various types of addi-
tional driving and damping, driven pendulum models are widely used since they often capture
the key dynamics of many complicated dynamical systems (Leven and Koch, 1981; Sauer et
al., 1999; Masoud et al., 2004). For instance, through vertical shaking of the pendulum pivot
point, a lot of chaotic motions are observed in the driving pendulum (Heng and Martienssen,
1992; Baker, 1995). However, a group of pendulums driven by horizontal forces has been recently
examined in experiments and widely applied in engineering (Thakur et al., 2008), yet the basic
dynamical behavior is still unclear and need further concentrations. The most noteworthy is
that horizontal driving may lead the pendulum to angular vibration of a non-zero mean value
(Schmitt and Bayly, 1998) and a variety of dynamical characteristics such as the existence of
bi-stability (Nakamura et al., 2011; Yan et al., 2012).
A series of equipment such as driving stepper motors, poles of metal and conveyor belts are

used to set up the device. It can be observed in the experiment that the special parameters
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lead the top and bottom ends of the rod of the pendulum to in-phase or anti-phase oscillating.
In our experiment, the amplitude-versus-frequency curve is studied, dynamic analysis of the
system and numerical simulation is carried out, and the basins and their stability of the two
coexisting periodic oscillation states are considered. Moreover, it is noticeable that there is a
certain difficulty to control the switching between the two coexisting movement patterns. In
reaction of this phenomenon, a possible explanation is given in theory, and it is hopeful to
benefit for more experiments and applications.

This paper is arranged as follows. In Section 2, the experimental setup is introduced. In
Section 3, we present the experimental results and analysis. In Section 4, the theoretical model
and analysis are introduced in detail. The results of numerical simulations are presented in
Section 5. Finally, in Section 6, we recommend some other significant applications and draw a
conclusion.

2. Experimental setup

A schematic of the physical pendulum system we consider, as shown in Fig. 1, consists of an
inverted pendulum system and an acquisition system linked with a computer. The system is
mainly composed of a driving stepper motor, conveyor belt, horizontal track, slider, and swinging
rod. The slider is confined on the horizontal track and can move freely in the direction of the
horizontal track. Applying a sine signal to the driving motor, the slider may exhibit a simple
harmonic movement in the direction of the horizontal track through the conveyor belt connected
to the motor. The swinging rod connected with the slider through a rotating axis (perpendicular
to the trace of the slider) can swing freely in the vertical plane.

Fig. 1. Experimental setup

Several sensors are set up on the rotating axis. The sensors record the data of the rotating
angle of the rotating axis and the horizontal displacement of the slider, and then transmits those
data to the computer for further analysis (Wu et al., 2014). The corresponding experimental
parameters are set as follows. Length of the rod is 0.193m, and the driving frequency varies
from 0.6Hz to 2.0 Hz. The time interval of acquisition is 0.01 s.
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3. Experimental results and analysis

Under driving with the sine signal, the movements of the slider and the swinging rod are coupled
together. To describe the movement of the slider and the swinging rod, the displacement x(t) and
the angular displacement θ(t) are defined by selecting the balance point of the simple harmonic
movement and the vertical line through the rotor axis as a reference, respectively. The time
series of the displacement x(t) and the angular displacement θ(t) recorded by the sensors reveal
the dynamics of the slider and the swinging rod as shown in Fig. 2a,b. Two kinds of movement
patterns are observed as (a) in-phase pattern, and (b) anti-phase pattern for different initial
values. When the coupled movement is in the in-phase (anti-phase) pattern, the slider and the
swing rod move in the same (opposite) directions.

Fig. 2. Time series of the horizontal displacement of the slider (expressed by x and plotted by the thin
black line) and the pivot angle of the rod (expressed by θ and plotted by the thick gray line).

(a) In-phase oscillation state with the initial value (x, θ) = (0.93, 0.52), (b) anti-phase oscillation state
with the initial value (x, θ) = (−0.49, 1.74)

According to the experimental set up, the driving signal has obvious influence on the ampli-
tude of the movement of the slider and the swinging rod. To reveal the effects of the frequency
of the driving signals on the movements, the amplitude-frequency characteristics of the driven
oscillators are recorded. Since there are two coexisting patterns, it is necessary to check if the
amplitude-frequency curves of those two patterns are different. The maximal swing angle of
the rod is recorded for all given frequencies of the driving signal as shown in Fig. 3. Intere-
stingly, in a particular range of the parameter f ∈ [0.722, 1.139], there are two quite different
amplitude-frequency curves for different patterns. When the system is in the anti-phase pattern,
the maximal swing angle is quite larger than that when the system is in the in-phase pattern.

Fig. 3. Amplitude-frequency curves of the horizontally driven pendulum. The circles and dots denote
the increasing and decreasing processes of frequency, respectively
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4. Theoretical model

We consider a horizontally driven pendulum system whose rotation axis is driven by a horizontal
force. The rod is rigid and uniform, the mass is m, and the length is l. The upper end is fixed
on a slider which can move horizontally at a particular rate along the track when driven by a
motor. A model diagram is shown in Fig. 4.

Fig. 4. Sketch of the model. A rod of mass m and length l is subjected to a horizontal driving force and
angular displacement θ from the vertical direction

We control the driving signal of the driving motor and let the speed of the slider satisfy the
following equation

ẋ(t) = Am sin(2πft) (4.1)

where Am is the maximum value of the speed and f is the frequency of driving force. When the
slider moves at the speed ẋ(t) in equation (4.1), the rod hinged in the slider will swing according
to the driving signal. The equation of dynamics of the system can be written as the following
Euler-Lagrange equation

L =
1

2
m
(

ẋ2 +
1

3
l2θ̇2 + ẋlθ̇ cos θ

)

−
1

2
mgl(1− cos θ) (4.2)

As a consequence, the kinematical equation of the system can be expressed as a second order
nonlinear differential equation

1

3
ml2θ̈ + πfmlAm cos(2πft) cos θ +

1

2
mgl sin θ + Cθ̇ = 0 (4.3)

In equations (4.2) and (4.3), m and l are the mass and length of the rod respectively, θ is
the swing angle of the rod, g is the acceleration of gravity, and C is the damping coefficient.

5. The results of numerical simulations

5.1. In-phase and anti-phase periodic oscillation

There are four parameters to be confirmed in equation (4.3). In order to ensure the simulation
results coincide with the experimental data, the parameters should be measured as accurately
as possible. The mass and length of the rod can be directly measured and the results are
m = 0.05631 and l = 0.193 (in SI). The maximum speed of the slider can be precisely adjusted
by the computer and the value is fixed as Am = 0.3544 so that the moving slider can be kept
in a proper range. Comparing the numerical simulation repeatedly with experimental results is
necessary to confirm the damping coefficient. Without the horizontal driving force, the system
is underdamped. If the rod is released from the horizontal direction, it will oscillate for a few
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periods and end up vertically stationary due to the action of damping. Through experiments,
we record the duration of the underdamped system and the number of times the rod passesthe
stable point. Thus, it can be found in the simulation after several repeated attempts that for the
damping coefficient is C = 0.001, the number of oscillations and the total time of the motion
are both consistent with the experimental results. Hence, the above values are determined to be
used in our following simulations.

We obtain the dynamics under different initial conditions by numerical calculation based on
the 4th-order Runge-Kutta method. There is also a coexistence of the in-phase and anti-phase
patterns in the system as shown in Fig. 5. The numerical results excellently agree with the
experimental phenomena given in Fig. 2. Figures 5a and 5b are numerical results of time series
of the in-phase and anti-phase oscillation state, respectively.

Fig. 5. Numerical simulation results of two kinds of the oscillation state. The displacement of the top
end of the rod is plotted by the thin black line and the pivot angle of the rod is plotted by the thick

grey line. (a) The in-phase oscillation state, (b) the anti-phase oscillation state

5.2. Bifurcation phenomenon

Let us consider the amplitude-frequency curve of the horizontally driven pendulum system
numerically. We record the maximal values of the swing angle of the rod with a quasi-static
method, i.e. we start from the driving frequency f = 0.7Hz (2.0Hz), then slightly increase
(decrease) the driving frequency and take the final states with tiny noise as the initial value for
a new f . Since there are two coexisting states when f = 0.7Hz, two branches of the amplitude-
frequency curves can be obtained. Compared with the amplitude-frequency of the experimental
results, the numerical one coincides with the experimental one well as shown in Fig. 6. The black
solid line and the grey dashed line are the numerical results while the black triangles and the
grey circles are experimental results.

Furthermore, the final state of the horizontally driven pendulum system is so sensitive to
the initial values that obvious uncertainty and unpredictability exist in the experiment. Two
very closing initial values may lead to quite different states. It is extremely difficult to make
the initial values exactly the same when repeating the practical experiments. There is always a
slight difference and interference during the experiments. Therefore, prediction and control of
the final state of the system become a noteworthy problem in the experiment.

5.3. Basin and its stability

It is meaningful to explore the basin stability of the two coexisting patterns since detailed
information of the basin stability is important in predicting the dynamical fate of the coupled
system. With the fixed parameters l = 0.193, Am = 0.3544, C = 0.001, f = [0.607, 1.1763] Hz,
the system has two coexisting patterns (in-phase or anti-phase patterns). To observe the basin
of those two coexisting patterns in detail, we recorded and dotted all initial values (θ0, θ̇0)
with which the system finally transits to the in-phase pattern for a given driving frequency f .
According to the results shown in Figs. 7a-7h, one may find that the basins of the two patterns
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Fig. 6. Amplitude-frequency curves of the numerical and experimental results. The upper branch is for
the anti-phase oscillation state, and the lower branch if for the in-phase state. The triangles (increasing)
and circles (decreasing) are the experimental results while the solid (increasing) and dash (decreasing)

lines are the numerical ones

Fig. 7. Basins of the system with different frequencies. From (a) to (h), the driving frequency of the
system changes from 0.8Hz to 1.15Hz by step of 0.05Hz

are possible and riddled in some phase space of (θ, θ̇). Moreover, with an increment in the driving
frequency, the basins of the in-phase pattern shrink with that of the anti-phase one expanding.

With detailed information on the basin, it is helpful to determine the final state of the
bistable system in the sense of the control experiment. Since is convenient to set the angular
velocity to be zero, one may take more attention to the basin when the initial angular velocity
is zero. For example, in this experiment, if the information on the basin is known as in Fig. 7h
for f = 1.15Hz, then we can surely get the anti-phase dynamics by pulling the swinging rod to
a certain point of angle (less than π/2) and then releasing it from the stationary state. However,
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the final state is hard to predict when the basins are riddled since tiny noise tends to change the
fate of the final state (Aguirre and Sanjuan, 2002), for example, if we initially pull the rod to a
position between θ = [π, 1.5π] for f = 1.15Hz, the final state is possible in-phase or anti-phase
in the experiment with small noise.
Owing to the interweave of basins of different states and inevitable systematic noise as well

as experimental error, it is wise to calculate the basin stability based on the method presened by
Menck et al. (2013). Applying it, we can calculate the basin stability for the anti-phase SBA and
in-phase pattern SBI by estimating the volume of the basin in a relatively sensitive subset of
the state volume Q ∈ (θ, θ̇). Therefore, according to the basin stability for different parameters,
the possibility of the system to reach the final state can be easily determined by the following
forms

SBA =
V ol(BA ∩Q)

V ol(Q)
SBI =

V ol(BI ∩Q)

V ol(Q)

Fig. 8. Basin stability of the system

The basin stabilities of the two coexisting patterns of the system versus the driving frequ-
ency f are calculated with the subset volume Q = 50000 points for each f ∈ [0.7, 1.2] Hz as
shown in Fig. 8. When f < 0.78Hz, all initial values will lead to an in-phase pattern. With an
increment in the frequency f , the basin stability of the in-phase pattern continuously decreases
till f > 1.17Hz.

6. Conclusion

Experimental tests and nonlinear numerical analyses reveal a great deal of results that seem to
be interesting from the research point of view. In this paper, a simple experimental device of
a horizontally driven pendulum is set up to explore rich dynamics such as the bistability and
bifurcation phenomenon in a specific range of the driving frequency. Two kinds of patterns, i.e. in-
-phase and anti-phase patterns coexisting with each other are observed. They have corresponding
branches of amplitude-frequency characteristics. The riddled basins are observed, which makes
it difficult to predict the final state in the experiment on a real system. The basin of stability is
calculated and applied to predict the final states of the multi-stable system for different driving
frequencies. When the driving frequency is low, the system has a unique in-phase oscillation
state; the basin of stability of the in-phase state decreases with an increment in the driving
frequency till the in-phase state disappears when the driving frequency is larger than a certain
value.
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Finally, we verified the experimental results by numerical simulation. Some suggestions were
also brought out from theory, which facilitated in the experiment the controlling of the final
state of the system and switching it between two kinds of oscillation states. Moreover, we hope
that our study of the horizontally driven pendulum system can play a guiding role in thr control
and synchronization problems of driven damping systems and coupled oscillatory systems in real
life.
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